On scalar curvature in lightlike geometry

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Lightlike Geometry in Indefinite Kenmotsu Manifolds

We investigate some geometric aspects of lightlike hypersurfaces of indefinite Kenmotsu manifolds, tangent to the structure vector field, by paying attention to the geometry of leaves of integrable distributions. Theorems on parallel vector fields, Killing distribution, geodesibility of those leaves are obtained. The geometrical configuration of such lightlike hypersurfaces and leaves of its sc...

متن کامل

On Lightlike Geometry of Para-Sasakian Manifolds

We study lightlike hypersurfaces of para-Sasakian manifolds tangent to the characteristic vector field. In particular, we define invariant lightlike hypersurfaces and screen semi-invariant lightlike hypersurfaces, respectively, and give examples. Integrability conditions for the distributions on a screen semi-invariant lightlike hypersurface of para-Sasakian manifolds are investigated. We obtai...

متن کامل

PRESCRIBING SCALAR CURVATURE ON Sn

on S for n ≥ 3. In the case R is rotationally symmetric, the well-known Kazdan-Warner condition implies that a necessary condition for (1) to have a solution is: R > 0 somewhere and R′(r) changes signs. Then, (a) is this a sufficient condition? (b) If not, what are the necessary and sufficient conditions? These have been open problems for decades. In Chen & Li, 1995, we gave question (a) a nega...

متن کامل

Solution of Vacuum Field Equation Based on Physics Metrics in Finsler Geometry and Kretschmann Scalar

The Lemaître-Tolman-Bondi (LTB) model represents an inhomogeneous spherically symmetric universefilledwithfreelyfallingdustlikematterwithoutpressure. First,wehaveconsideredaFinslerian anstaz of (LTB) and have found a Finslerian exact solution of vacuum field equation. We have obtained the R(t,r) and S(t,r) with considering establish a new solution of Rµν = 0. Moreover, we attempttouseFinslergeo...

متن کامل

On the Scalar Curvature of Einstein Manifolds

We show that there are high-dimensional smooth compact manifolds which admit pairs of Einstein metrics for which the scalar curvatures have opposite signs. These are counter-examples to a conjecture considered by Besse [6, p. 19]. The proof hinges on showing that the Barlow surface has small deformations with ample canonical line bundle.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometry and Physics

سال: 2007

ISSN: 0393-0440

DOI: 10.1016/j.geomphys.2006.04.001